POSITIONS AND AREAS OF SUN SPOTS ## POSITIONS AND AREAS OF SUN SPOTS-Continued | [Communicated by Capt. J. F. Hellweg, U. S. Navy (Ret.), Superintendent, U. S. Naval Observatory. Data furnished by the U. S. Naval Observatory in cooperation with | |---| | Harvard and Mount Wilson Observatories. The difference in longitude is measured from the central meridian, positive west. The north latitude is positive. Areas are | | corrected for foreshortening and are expressed in millionths of the sun's visible hemi- | | sphere. The total area for each day includes spots and groups | | Harvard | and | Da
Mot | ta furi
int Wi | ished l
lson Ob | y the U | .S. Na
ies. Th | val Obs | ervator | y in coo | ot, U.S. Naval
operation with
le is measured
ve. Areas are | | Eas
eri | | Mt.
Wilson | | Heliograp | ohic | Aı | rea. | Total
area | | |------------------------|---------------------------------|-----------|--|--|---|---|----------------------|------------------|-------------------------------------|---|-----------------|--------------------|----------|--|---|--|--|----------|--------------------------------------|--------------------|------------| | corrected sphere. | l for i | tores | horteni | ng and | are expr | essed in | million | iths of t | he sun' | s visible hemi- | Date | stan
arc
tim | id-
i | group
num-
ber | Diff.in
longi-
tude | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | Observator | | Date | Eas
er:
star
ar
tin | nd-
d | Mt.
Wilson
group
num-
ber | Diff.in
longi-
tude | Heliograp
Longi-
tude | Lati-
tude | Spot | Group | Total
area
for
each
day | Observatory | 1937
Dec. 16 | h. 1 | m.
27 | 5688
5692
5693
5685
5691 | -57. 0
-55. 0
-43. 0
+10. 0
+18. 0
+19. 0 | 237. 7
239. 7
251. 7
304. 7
312. 7 | +27.0
+27.0
-22.0
+23.0
-6.0
+9.0 | | 1, 115
48
48
48
48
61 | | U. S. Navs | | 19 57
Pec. 1 | h.
11 | | 5664 | -36. 0 | 98. 0 | -10.0 | | 24 | 24 | U. S. Naval. | | | | 5683
5682
5687
5686 | +27. 0
+50. 0
+67. 0 | 313. 7
321. 7
344. 7
1. 7 | $ \begin{array}{r} -20.0 \\ +9.0 \\ -11.0 \\ +23.0 \end{array} $ | | 582
485
12
194 | | | | Pec. 2 | 11 | 52 | 5670
5669
5664
5663
5668
5667 | -70.0
-49.5
-22.0
-15.0
-12.0
+53.0 | 50. 6
71. 1
98. 6
105. 6
108. 6
173. 6 | $+10.0 \\ -13.0$ | 48
48
6 | 12
36
24 | 174 | Do. | Dec. 17 | 11 | 26 | 5684
5688
5692
5693
5685
5691 | +70.0
-45.0
-38.0
-30.0
+22.0
+25.5 | 4.7
238.2
245.2
253.2
305.2
308.7 | +14.0
+27.0
-20.0
+24.0
-6.0
+10.0 | 12 | 1, 115
24
97
48
121 | 2,605 | Mt. Wilso | | Pec. 3 | 11 | 5 | 5671
5670
5664 | 70.0
58.0
10.0 | 37. 9
49. 9
97. 9 | +12.0
-19.0
-9.5 | 12
61 | 12 | 85 | Do. | | | | 5683
5682
5687 | +32. 0
+39. 0
+60. 0 | 315. 2
322. 2
343. 2 | -20.0
+10.0
-9.0 | | 533
485
36 | 2, 459 | 1 | | ec. 4 | 11 | 32 | 5671
5670
5664 | -57. 0
-48. 0
+3. 0 | 37. 4
46. 4
97. 4 | +13.0
-19.0
-9.0 | 12 | 61
12 | 85 | Mt. Wilson. | Dec. 18 | 10 | 51 | 5688
5692
5693
5685 | $ \begin{array}{r} -33 & 0 \\ -28 & 0 \\ -17 & 0 \\ +36 & 0 \end{array} $ | 237. 4
242. 4
253. 4
306. 4 | $ \begin{array}{r} -21.0 \\ +23.0 \\ -7.0 \end{array} $ | | 873
194
36
36 | | U.S. Nav | | ec. 5 | 11 | 12 | 5676
5675
5670
5674 | -79. 0
-53. 5
-35. 5
+18. 0
+66. 0 | 2. 4
27. 9
45. 9
99. 4 | | 48
16 | 61 73 | | Do | | | | 5691
5683
5682 | +44.0 | 313. 4
314. 4
324. 4 | +9. 0
-21. 0
+8. 0 | | 97
388
291 | 1,915 | | | Dec. 6 | 11 | 11 | 5673
5676
5670
5678
5677
5672 | -66.0
-18.0 | 2. 3
50. 3 | +23.0
-18.0
-26.0
-18.5 | 61 36 | 85
24
24 | 234 | Do. | Dec. 19 | 12 | 54 | 5688
5692
5693
5691
5683
5682 | -17. 0
-12. 0
-3. 0
+57. 0
+58. 0
+68. 0 | 239. 0
244. 0
253. 0
313. 0
314. 0
324. 0 | +27. 0
-21. 5
+22. 0
+9. 0
-21. 0
+8. 0 | 24 | 388
97
400
242 | 1, 830 | Do. | | ec. 7 | 11 | 7 | 5674
5673
5676
5670
5678 | +1.0
+31.0
+32.0
+80.0
-52.0
-5.0
+1.0 | 3. 1
50. 1
56, 1 | -17.0
-25.0
+22.0
-19.0
-25.5 | 21 | 242
36 | 496 | U. S. Naval. | Dec. 20 | 11 | 20 | 5696
5688
5693
5691
5683 | $ \begin{array}{r} -69.0 \\ -5.0 \\ +10.0 \\ +69.0 \\ +70.0 \end{array} $ | 174. 7
238. 7
253. 7
312. 7
313. 7 | -26. 5
+27. 0
+22. 0
+9. 0
-21. 0 | 36 | 582
194
97
339 | 1, 248 | Do. | | | | | 5677
5674
5672 | +16.0
+45.0
+45.0 | 71, 1
100, 1
100, 1 | -19.0
-18.0
+11.0 | | 36
291
24 | 439 | _ | Dec. 21 | 11 | 6 | 5696
5688
5688 | -57.0
+2.0
+9.0 | 173. 7
232. 7
239. 7 | $ \begin{array}{r} -27.0 \\ +28.0 \\ +27.0 \\ +22.0 \end{array} $ | 48
36 | 582
194 | | Do. | | ec, 8 | 11 | 9 | 5676
5670
5678
5679
5674
5672 | -40.0
+9.0
+13.0
+30.5
+59.0
+59.0 | 1. 9
50. 9
54. 9
72. 4
100. 9
100. 9 | -25.0
-19.0
-18.5 | 16
16
12
24 | 194 | 310 | Do. | Dec. 22 | 11 | 12 | 5693
5691
5683
5699
5698 | +23. 0
+82. 0
+83. 0
-72. 0
-67. 0 | 253. 7
312. 7
313. 7
145. 5
150. 5 | +10.0
-20.5 | 242 | 291
242 | 1, 393 | Do. | | ec. 9 | 11 | 17 | 5682
5683
5676
5670
5679
5672 | -74.0
-74.0
-27.0
+22.0
+44.0
+72.0 | 314. 7
314. 7
1. 7
50. 7
72. 7
100. 7 | -18.0
-18.0 | 73
36
16
16 | 145 | | Do. | | | | 5697
5696
5695
5688
5693 | -47. 0
-43. 0
-40. 0
+23. 0
+40. 0 | 170. 5
174. 5
177. 5
240. 5
257. 5 | $ \begin{array}{r} -27.5 \\ +10.0 \\ +27.0 \\ +21.0 \end{array} $ | 48 | 12
24
582
145 | 1 | | | ec. 10 | . 10 | 58 | 5674
5683
5682
5676 | | 313. 7
316. 7 | -18.0
-22.0
+8.0 | | 194
485
97 | 577 | 100. | Dec. 24 | 10 | 59 | 5699
5702
5703
5701
5696 | -40.0
-30.0
-18.0 | 144. 2
151. 2
151. 2
161. 2
173. 2 | +10.0 $+21.0$ -9.5 -27.0 | 24
36 | 485
97
24 | | Mt. Wil | | ec. 11 | 11 | 2 | 5683
5682 | -50.0 | 312. 5
318. 5 | -21.0
+9.0 | | . 145 | 1, 212 | | | | | 5695
5088
5093 | +51.0
+68.0 | 259. 2 | +9. 0
+27. 0
+22. 0 | | 1 | 1, 586 | | | ec. 12 | | | 5683
5682
5681
5680 | -29. 0
-10. 0
+7. 0 | | -22.0 | | 339
97
97 | 1, 454 | Do. | Dec. 25 | 11 | 37 | 5099
5703
5702
5698
5695 | -33. 0
-28. 0
-26. 0
-25. 0
+3. 0 | 151.7 | +13.0
-11.0
-20.0
+10.5
-4.5
+10.0 | | 436
97 | | U. S. Na | | ec. 13 | - 11 | 9 | 5683
5682
5681
5680
5684 | $ \begin{array}{r} -24.0 \\ -14.0 \\ +4.0 \\ +19.0 \\ +33.0 \end{array} $ | 312. 0
322. 0
340. 0
355. 0 | +10. 0 | | 485
97
97 | | | Dec. 26 | 12 | 23 | 5688
5693 | +64.U | 241. 7
260. 7 | 1 | 1 | 1 | 1, 586 | | | ec. 14 | 12 | 15 | 5688
5685
5683 | -83. 0
-19. 0
-10. 0 | 239. 3
303. 3
312. 3 | +26. 0
-6. 0
-20. 0
+9. 0 | 727 | 73
824 | | U. S. Naval. | | | | 1 5703 | -18. 0
-13. 0
-12. 0
+17. 0
+77. 0 | 151. 1
152. 1
181. 1
241. 1 | $ \begin{array}{c c} -11.0 \\ -20.0 \\ +10.0 \\ +9.5 \\ +27.0 \end{array} $ | | 388
291
97
194
388 | | | | | | | 5681
5687
5680
5686
5684 | +18. 5
+19. 0
+30. 0
+40. 0
+47. 0 | 340. 8
341. 3
352. 3
2. 3
9. 3 | | 36 | 61 | 2, 496 | - | Dec. 27 | 14 | 38 | 5704
5706
5699
5703
5702 | -44. 0
-12. 0
-4. 0
+1. 0
+32. 0
+55. 0 | 105. 7
137. 7
145. 7
150. 7
153. 7 | +12.0
-9.0
-11.0
-20.0
+10.0 | | 145
16
388
727
145 | | Mt. Wil | | Dec. 15 | . 14 | 46 | 5688
5692
5685
5683
5691
5690 | -70. 0
-65. 0
-3. 0
+5. 0
+15. 0
+30. 5
+34. 0
+55. 0
+62. 0 | 040 7 | $\begin{bmatrix} -6.0 \\ -20.0 \\ 10.0 \end{bmatrix}$ | | 194
679 | | - | Dec. 28 | 11 | 23 | | +32.0
+55.0
-31.0
-30.5
+9.0
+13.0
+17.0
+44.0
+63.0 | | +12.0 $+17.5$ -11.0 -20.0 | 6 | 145
339
727 | 1,809 | U. S. Na | #### POSITIONS AND AREAS OF SUN SPOTS-Continued | | East- | Mt. | F | Heliograp | hic | A. | rea | Total | ! | |-----------------|------------------------------|--|---|---|--|------|--|----------------------------|--------------| | Date | ern
stand-
ard
time | Wilson
group
num-
ber | Diff.in
longi-
tude | Longi-
tude | Lati-
tude | Spot | Group | area
for
each
day | Observatory | | 1937
Dec. 29 | h. m.
11 55 | 5712
5704
5707
5711
5710
5699
5703
5702
5695 | -32.0
-19.0
-9.0
-9.0
+8.0
+23.0
+26.0
+30.0
+59.0 | 92. 9
105. 9
115. 9
115. 9
132. 9
147. 9
150. 9
154. 9
183. 9 | -16.0
+12.5
+19.0
+14.5
-14.5
-11.0
-20.0
+10.0 | | 48
194
24
12
36
242
582
36
194 | 1, 368 | Do. | | Dec. 30 | 12 12 | 5712
5704
5707
5710
5709
5699
5703
5702
5695 | -19.0
-6.0
+7.5
+22.0
+26.0
+36.0
+39.0
+45.0
+70.0 | 92. 5
105. 5
119. 0
133. 5
137. 5
147. 5
150. 5
156. 5
181. 5 | -15.0
+13.0
+19.0
-14.5
-16.0
-11.0
-21.0
+10.0
+9.0 | 36 | 97
194
24
24
242
485
36
97 | 1, 235 | Mt. Wilson. | | Dec. 31 | 11 20 | 5713
5712
5704
5707
5710
5709
5699
5703
5702 | -75.0
-7.0
+9.0
+20.0
+37.0
+40.0
+50.0
+53.0
+58.0 | 23. 8
91. 8
107. 8
118. 8
135. 8
138. 8
148. 8
151. 8
156. 8 | +5.0
-15.0
+12.5
+19.5
-14.5
-15.0
-11.0
-20.0
+11.0 | 24 | 388
145
97
73
48
242
339 | 1, 380 | U. S. Naval. | Mean daily area for 30 days=1,252. ### PROVISIONAL SUNSPOT RELATIVE NUMBERS, DECEMBER 1937 [Dependent alone on observations at Zurich and its station at Arosa] [Furnished through the courtesy of Prof. W. Brunner, Eidgen. Stern-Warte. Zurich. | December
1937 | Relative
numbers | December
1937 | Relative
numbers | December
1937 | Relative
numbers | |------------------|---------------------|----------------------------|--|----------------------------|-------------------------------------| | 1
2
3
4 | 14
Wc 33 | 11
12
13
14
15 | Ec 72
70
Mc 107
Macd 112
Wac 141 | 21
22
23
24
25 | 86
Ecd 90
Ec 107 | | 6 | | 16
17
18
19
20 | Ec 155
109
a 124
b 107 | 26
27
28
29 | aa 125
a 103
Mc 113
Mc 111 | | | | | | 31 | ad 112 | Mean, 21 days = 95.3 a= Passage of an average-sized group through the central meridian. b= Passage of a large group or spot through the central meridian. c= New formation of a group developing into a middle sized or large center of activity; E: on the eastern part of the sun's disc; W: on the western part; M: in the central circle denote the same of a large or average-sized center of activity on the east limb. ## AEROLOGICAL OBSERVATIONS [Aerological Division, D. M. LITTLE in Charge] By LOYD A. STEVENS Mean free-air data, based on airplane weather observations during December 1937, are given in tables 1 to 3. A description of the methods by which the various monthly means and normals therein are computed may be found in the aerological sections of the Monthly Weather Review for January and March 1937. It will be noted that many of the "normals" are based on only 3 years of observations. Conclusions based on departures from such short period "normals" must be used with caution. The mean surface temperatures for December (see chart I) were, in general, above normal over the Rocky Mountain and Pacific coast regions and over portions of the North Atlantic and southern New England States; elsewhere they were below normal. The greatest positive departures (+3° C. to +4° C.) occurred over portions of the Rocky Mountains while the greatest negative departures (-1° C. to -2° C.) occurred over a region whose center was approximately over the state of Illinois. With a few exceptions, the mean free-air temperatures for the month, up to 5 kilometers, were below normal. The most significant exception occurred over Oakland, Calif., where the temperature was above normal at all levels, the greatest positive departure from normal (+1.5° C.) occurring at 0.5 and 1 kilometer. The greatest negative departures at all levels occurred over the region of the Great Lakes (-4.3° C. at Sault Ste. Marie at 1.5 km) with a secondary center of large negative departures over Spokane, Wash. (-3.0° C. at 4 and 5 km) in the higher levels. The highest mean temperatures occurred over San Diego up to 2 kilometers and over Pensacola above 2 kilometers. The lowest mean temperatures occurred over Fargo at 0.5 kilometer and over Sault Ste. Marie at all other levels. The mean free-air temperatures for December were lower than for November by 4° C. to 8° C. over the northern part of the country. This difference in temperature between the 2 months decreased toward the south, however, and amounted to only 1° to 3° C. over the southern part of the country. The greatest decrease in the mean temperature occurred over Fargo at 0.5 kilometer where the value for December (-12.3°C.) was 9.1°C. lower than that for November $(-3.2^{\circ} C.)$. The mean free-air relative humidities, shown in table 2, were above normal over most of the country at all levels. Minus departures were confined largely to the Northeastern States in the lower levels and to Pensacola at all except the 0.5 kilometer level. The greatest positive departure (+14 percent) occurred over San Diego at 3 kilometers while the greatest negative departure (-11)percent) occurred over Pensacola at both 3 and 5 kilometers. The mean free-air barometric pressures are shown in table 3. In general there was a decrease in the average pressures for December as compared with those for November except that in the lower levels there were small increases of 1 to 2 millibars at most stations. The mean free-air isobaric charts, as drawn from the values in table 3, were characterized by well-defined statistical centers of low pressure over the region of the Great Lakes; the lowest mean pressures for the entire country occurring at Sault Ste. Marie, Mich., at all levels. The highest mean pressures occurred over Pensacola, Fla., at all levels. Over the eastern part of the country there was a pronounced steepening of the south to north pressure gradient in December as compared with November but a slight decrease in gradient occurred over the western part of the country. Free-air resultant winds, based on pilot-balloon observations made near 5 a.m. (75th meridian time), are shown in table 4. In general the resultant directions were re-